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Abstract: In probability theory it is known that Markov chain is frequently used in order to 
predict the future situations. Moreover, Markov chain theory is used to study the change 
rules of the economic phenomenons, to describe consumers’ brand loyalty, in marketing 
for dynamic forecasts of market share, etc. In this study we introduced a Markov process 
model to track the evolution of some financial products for a commercial bank. At the same 
time we proposed a brief theory on related properties of Markov process based on which 
we continued the empirical research. Also, we used the mean first passage times, an 
another interesting and important long-term property of the  Markov chain because they 
inform us about the steps that must be taken on average to move from one state to 
another. 
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1. Introduction 
Markov chain model has been widely studied and applied in order to predict the future 
situations. Moreover, Markov chain theory is used to study the change rules of the 
economic phenomenons, to describe consumers’ brand loyalty (Uslu and Cam, 2000; 
Buciuman, 2011), in marketing for dynamic forecasts of market share (Armstrong and 
Farley, 1969; Dura, 2006; Zhang and Zhang, 2009; Lihong et al., 2014; Chan, 2015; 
Kovacs, 2015), etc.  
In this study we introduced a Markov process model to track the evolution of some 
financial products for a commercial bank. Also, we proposed a brief theory on related 
properties of Markov process based on which we continued the empirical research, and we 
used the mean first passage times, an another interesting and important long-term 
property of the  Markov chain. 
 
2. Review of basic mathematical concepts 
Markov chain is a special kind of stochastic process named after Russian mathematician, 
Andrei Andreevich Markov, where the outcome of an experiment depends only on the 
outcome of the previous experiment. 

A sequence of random variables ,...X,X}X{ t 21=  is called Markov chain if the following 

equality holds: 

)iX/jX(P)iX,...,kX,kX/jX(P tttt ======= 1+22111+  ,...,t 10=  and 

Sj,i,...,k,k  21 ,  

where S is named the state space of the chain. S can be finite or countable. In other words 
this means that the future state j at time t+1 only depends on state i in which the system 
was in the previous time t, and this probability does not depend on the states in which it 
was before. We also can say that the Markov chain “memory” is very short: in every 
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moment it only “remembers” the previous period. This intuitive explanation is that the 
current state of the system includes any information relating to past states, which are 
needed to determine the following period of the state. 
The following formulation, if the probability does not change with time 

)iX/jX(P)iX/jX(P tt ===== 011+    ,...,t 10=  and for all Sj,i !  

assumes that the Markov chain is stationary. This probability is known as an one-step 

transition probability, denoted by ijp , and describes the probability of movement from state 

i to state j, 

ij

not

tt p)iX/jX(P ===1+  

and has the following properties: 

 ],[pij 10! , ∑
n

j
ijp

1=

1=  for n,...,i 1= . 

The process can remain in the state it is in, and this occurs with probability iip . 

The matrix notation facilitates modelling and subsequent calculations and it is considered 
to be a key component of a Markov chain. 
An one-step transition probability matrix (say P) with n states can be written: 
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Chapman-Kolmogorov equations allow the calculation of n-step transition probabilities by 
means of the matrix product; namely, to calculate the two-step transition probabilities, we 
generate the following product: 

PPP )( •=2  

The n-step transition probabilities can be determined based on the one-step transition 
probabilities: 

n)n( PP =     for      1≥n  

}p{P
)n(

ij
)n( =  where )iX/jX(Pp tnt

)n(
ij === +  

and the ijth entry of the matrix nP  gives the probability that the Markov chain, starting in 
state i, will be in state j after n steps. 
We now consider the long-term behavior of a Markov chain when it starts in a state chosen 
by a probability distribution on the set of states, which we will call a probability vector, 
denoted by v. This probability vector with r components is a row vector whose entries are 
non-negative and the sum of the components is equal to 1. 
If v is a probability vector which represents the initial state of a Markov chain, then we think 
of the ith component of v as representing the probability that the chain starts in state i. This 
is usually given as an initial probability vector. 
It is easy to see that the probability that the chain is in state i after n steps is the ith entry in 
the vector  

n)n( vPv = . 
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When n is large enough, the transition probabilities stabilize, so that the probability that the 
system is found in a given state after many steps does not depend on the state in which it 
began. These probabilities are called stationary probabilities: 

)n(
ij

n
j plim

∞→

=π  

The vector jπ  is a strictly positive probability vector (the components are all positive and 

their sum is equal to 1). 

We can find the limiting vector jπ  (also called steady state vector) from the following 

equations system: 

∑
r

i
ijij pπ π

1=

=  , r,...,j 1=  

1=
1=

∑
r

j
jπ    

where r is the total number of Markov chain states. If the equations are solved, we obtain 
unique solution. Stationary probabilities are an interesting characteristic of a system which 
can be modelled by a Markov chain because it allows us to know the percentage of time 
that the system is in each state. 
Should be considered that the Markov chains model is a probabilistic technique, it does not 
provide a recommended decision. 
The mean first passage times are another interesting long-term property in a Markov chain 
because they inform us about the steps that must be taken on average to move from one 
state to another. 

Consider the mean first passage time from i to j and assume that ji ≠ , Sj,i  . This may 

be computed as follows: take the expected number of steps required given the outcome of 
the first step, multiply by the probability that this outcome occurs, and then add them up. If 
the first step is to j, the expected number of steps required is 1; if it is to some other state k 

( }j{\Sk  ), the expected number of steps required is k jμ  plus 1 for the step already 

taken. Thus, the ijμ  value can be determined as follows: 

∑
≠ jk

k jikijij )1μ(ppμ ++=  

and if we used that 1pp
jk

ikij =+ ∑
≠

, then  

∑∑
 Sk

jjijk jik
jk

k jikij μp-μp1μp1μ +=+= , Sj,i  . 

To calculate ijμ  we realise that it is necessary to know k jμ , so equations are added up 

until an equations system is formed which suffices to calculate the first passage time from i 
to j, and some others. Usually these calculations are made with the help of computer 
programs. The theory presented above was adopted in the empirical study of this paper. 

 
3. Research Methodology 
Our research is an empirical one, based on the experience of some financial economic 
analysts of a commercial bank, considering that the data was provided by them. In this 
study we used Matlab for calculations, which is an interactive program for numerical 
computation and data visualization. Also, for calculations, was used Microsoft Excel. 

 
4. The empirical research 
Further on we tried to model the annual evolution of a set of 10 financial products by 
means of a Markov chain. The 10 financial products which the bank offers to individuals 
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and companies are: personal loan, car loan, mortgage / real estate loan, refinancing credit, 
deposits, credit card, debit card, business card, Gold card, current account and attached 
services. We have classified these financial products into three categories: 

· 1 product is considered appealing: highly profitable in the short term, but uncertain 
in the mid and long terms. 

· 7 products are considered secure: mean estimated profitability for the short, mid 
and long terms. 

· 2 products are considered insecure: their profitability varies, even in the short term. 
We estimates that an appealing product still has the same probability of remaining 
appealing the next year or becomes a secure or an insecure product. Conversely, the 
secure product becomes an appealing one with a 0.25 probability, while its probability of 
remaining secure is 0.5. Insecure products have a 0.1 probability of being considered 
secure products and of 0.8 of still being considered insecure products. 
Knowing the dates we can establish the initial transition probability matrix. The state space 

of the chain is }S,S,S{S 321= , where S1 represents appealing products, S2 represents 

secure products, S3 represents insecure products. 
 
Table 1: The transition probability matrix 

 
S1 S2 S3 

S1 1/3 1/3 1/3 

S2 0.25 0.5 0.25 

S3 0.1 0.1 0.8 

 
First we want to find the mean recurrence times for each state of the Markov chain. 
Using Matlab, the expected first passage times are: 
 
Table 2: The expected first passage time 

 
S1 S2 S3 

S1 5.67 5.33 3.33 

S2 6 4.25 3.67 

S3 8 7.67 1.7 

Source: author’s calculation 
 
After calculations, we find that a mean of 5.67 years is expected for an appealing product 
to be once again considered appealing, 4.25 years is needed for a secure product to be 
once again considered secure, and a time of 1.7 years is required for an insecure product 
to be once again considered insecure. The average time that must pass for an appealing 
product to become a secure product is 5.33 years, and to become an insecure product is 
3.33 years. 
As the Markov chain is finite and ergodic, it can be concluded that a stationary distribution 
exists. To calculate it, the following equations system is considered: 
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3211 π
3

1
π

3

1
π

3

1
π ++=  

3212 π25.0π5.0π25.0π ++=  

3213 π8.0π1.0π1.0π ++=  

1πππ 321 =++  

By solving the linear equations system, the following stationary transition probabilities are 
obtained: 

1765.0π1 =  

2353.0π 2 =  

5882.0π 3 =  

The probability of an appealing product in the long term is 17.65%, and for a secure 
product it is 23.53%. If we want to know how many products will be in the long term, by 
considering the initial distribution, then we found the following: 

765.1π•10    1765.0π 11 == →  

353.2π•10    2353.0π 22 == →  

882.5π•10    5882.0π 33 == →  

In the long term, there are less secure products, but on the other hand there are more 
insecure ones. The number of appealing products almost remained unchanged. 
Next, we consider the two-step transition probability matrix. 
 
Table 3: The two-step transition probability matrix 

 
S1 S2 S3 

S1 0.2278 0.3111 0.4611 

S2 0.2333 0.3583 0.4083 

S3 0.1383 0.1633 0.6983 

Source: author’s calculation 
 
From the two-step transition probability matrix we can observe the probabilities after 2 
years. The probability that an appealing product continues to be appealing after 2 years is 
22.78%. After 2 years the probability that an appealing product, respectively a secure 
product becomes an insecure product show an increasing tendency, 46.11%, respectively 
40.83%. After 2 years the probability that an appealing product becomes a secure product 
show a decreasing tendency, 31.11%, respectively an insecure product becomes a secure 
product show an increasing tendency, 16.33%. 
We present below the evolution of the three financial products for 14 years. 
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Figure 1: The evolution of the three financial products (for 14 years) 
Source: made by the author 
 
The probability of an appealing product in the long term decreases from 33.33% to 
17.65%, and for a secure product it decreases from 50% to 23.53%, and for an insecure 
product it decreases from 80% to 58.82%. 
 
5. Conclusions 
In this study we showed that the Markov chain model can be used to model the annual 
evolution of some financial products. We answered a few important questions by finding 
the expected first passage times, the stationary transition probabilities, the two-step 
transition probability matrix. 
The process what we modeled in this study was stationary. In case of stationary time 
series the use of Markov chain is simpler, furthermore, is more accurate and efficient as 
well. We also supposed that the transition probabilities do not change over time and the 
number of states is stable over time. 
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Markov chain model provides probabilistic information about a decision situation that can 
aid the decision maker in making a decision. 
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