
810

OPTIMIZATION OF DISTRIBUTED QUERY USED IN SYNCHRONIZING DATA

BETWEEN TABLES WITH DIFFERENT STRUCTURE

Demian Horia

Faculty of Economics

University of Oradea

Replication can be used to improve local database performance and to improve the availability of
applications. An application can access a local database rather than a central database from another
site, which minimize network traffic, locking escalation at the central database and achieve maximum

performance for current insert, delete or update operations. The application can continue to function if
the central database is down, or cannot be contacted due to a communication problem, power or

hardware failure. This paper is focused on presenting a synchronization process between a central
Microsoft SQL Server database and many remote sites databases. One possible problem in replication

can appear when the two databases have different organization of tables and structures.
Keywords: replication, data synchronization, openquery, linked server, parameterized query,
uniqueidentifier, SQL Server

In this paper we will focus on the problem of synchronizing data between a central database and many

client databases, when the client and the server databases have different organization of tables and

structures. All the client databases are identical, this means that have the same number of tables, the

tables have the same structure, but the records are different. This model can be used to improve local

database performance and availability of applications at the clients, because we access the local

database rather than a central database. Other benefits are the minimization of network traffic between

the client and the central location, the minimization of locking at the central database, the maximization

of up time because we does not need a permanent communication channel between the clients and the

central location and also the minimization of costs.

The architecture of the network

The network consists of one Central Server on which we have the central database and many client

servers, each of them with its own database used in the local area for storage the local transactions, like

in figure 1. Between the client servers and the central server communications channels had been made

by using VPN (Virtual Private Network). This communication channels are most of the time down, and

from time to time get connected.

Figure 1. The architecture of the network

C
en

tral

S
erv

er

C
en

tral

D
atab

ase

C
lien

t

S
erv

er 1

C
lien

t

D
atab

ase

C
lien

t

S
erv

er n

C
lien

t

D
atab

ase

…………………

…..

Communication channel

811

If we want to synchronize the information from client database with the server, we have to open first the

communication channel and after that to synchronize the data. Microsoft SQL Server offers a

mechanism of defining linked servers which can be used to run distributed query against multiple

server. Our scenario consists of a one way data transfer from Central Database to the Client Database.

We have to obtain new or modified data from the Central Database using inner join operations between

TableA and TableB and to copy these data in TableC from Client Database. The fields used for

filtering are of uniqueidentifier data type.

We want to obtain the best performance for our process of synchronizing the data.

One syntax for doing this operation is:

Select A.somefields, B.somefields

 From CentralServer.CentralDatabase.dbo.TableA A

 Inner Join CentralServer.CentralDatabase.dbo.TableB B

 On A.idProduct = B.idProduct

 And B.FilteringField = @SomeValue

Where not exists (Select * from TableC C

 Where C.idProduct = A.idProduct)

In our studying case TableA contains 1915 records, TableB contains 7341 records and TableC contains

1664 records. We obtain 243 new records which have to be copied in TableC. In our test environment

this query takes about 47 seconds. The explanation for this bad performance are given to us by the

following sentence “Queries involving the following are never delegated to a provider and are always

evaluated locally: bit, uniqueidentifier” (Microsoft), which means that the records are taken from the

Central Database to the client, and all operations are done at the client. For a poor connection we lose

precious time with data transportation.

Figure 2. Execution plan

The execution plan demonstrates that two remote query are executed against the linked server for

bringing locally data from TableA and also from TableB, and only after that the inner join operation are

executed at the client site. From this execution plan we understand that 1915 +7341 records are moving

from central database to the client site.

One thing we have to optimize is that of forcing to execute inner join operation at the Central Server

site. This can be done if we define a view in the CentralDatabase or if we use OPENQUERY syntax to

send queries which will be executed at the central database.

Select *

from OPENQUERY(CentralServer,'Select A.somefields, B.somefields

from CentralDatabase.dbo.TableA A

inner join CentralDatabase.dbo.TableB B

on A.idProduct = B.idProduct') As R

where R.FilteringField = @SomeValue

and not exists (Select * from TableC C

 Where C.idProduct = A.idProduct)

812

Because OPENQUERY does not accept variables for its arguments, we have to write filtering condition

outside. The execution plan demonstrate us that only 7341 records are coming from the central database

which resulted in better performance, which means 43 seconds.

Figure 3. Execution plan

The next big thing to optimize is that of execution of filtering condition at the central database to obtain

only 1907 records instead of 7341. If we know exactly the value used for filtering we can write in the

OPENQUERY the filtering condition.

Select *

from OPENQUERY(CentralServer,'Select A.somefields, B.somefields

from CentralDatabase.dbo.TableA A

inner join CentralDatabase.dbo.TableB B

on A.idProduct = B.idProduct

and A.FilteringField =VALUE

') As R

where

not exists (Select * from TableC C

 Where C.idProduct = A.idProduct)

The time needed for executing this query was 7 seconds, and the execution plan can be analyze

from the figure 4.

Figure 4. Execution plan

As we can see only 1907 records came from the central database, which is an explanation for

our best results until now.

Because OPENQUERY does not accept variables for its argument, we can construct the sting

dynamically and executes after that like in the following example:

DECLARE @SQLSTMT nCHAR(4000)

DECLARE @SOMEVALUE uniqueidentifier

--we can put here a code for initializing the value of our variables

SET @SOMEVALUE = '341FE6DA-D431-4D72-93F0-E20B2CDB1767'

SET @SQLSTMT =N' Select * '

+'from OPENQUERY (CENTRALSERVER, ''Select A.somefields, B.somefields '

+' from CentralDatabase.dbo.TableA A'

+' inner join CentralDatabase.dbo.TableB B '

813

+' on A.idProduct = B.idProduct ‘

+’ and B.FilteringField = '''''+cast(@idSomeValue as char(36))+''''''') As A '

+' where not exists (select * from TableC C '

+' where C.idProduct = A.idProduct) '

EXECUTE SP_EXECUTESQL @SQLSTMT

The execution plan for this command can be viewed in the following figure, and we can see the same

results as in the last example. The execution of the Join operation and the filtering occurs on the central

server. We achieve the same results.

Figure 5. Execution plan for dynamic query

The speed is well for the preceding examples, but we can improve performance, if we can rewrite the

query without making reference to a table from the client site.

To do this we have to kow for every records from the central site for every records involved in the

query, the date when the record was added or modified. This date has to be copied to the client site.

DECLARE @SQLSTMT nCHAR(4000)

DECLARE @SOMEVALUE uniqueidentifier

DECLARE @DATA datetime

SET @SOMEVALUE = '391FE6DA-D431-4D72-93F0-E20B2CDB1767'

SELECT @DATA =MAX(DATA)

 FROM TABLEC

SET @SQLSTMT =N' Select * '

+'from OPENQUERY (CENTRALSERVER, ''Select A.somefields, B.somefields '

+' from CentralDatabase.dbo.TableA A'

+' inner join CentralDatabase.dbo.TableB B '

+' on A.idProduct = B.idProduct ‘

+’ and B.FilteringField = '''''+cast(@SomeValue as char(36))+''''''

 +' and P.Dataoperarii >='''''+cast(@data as char(20))+''''''''

 +') As A '

EXECUTE SP_EXECUTESQL @SQLSTMT

We obtain 1 seconds for 243 records, the best results.

Figure 6.Execution plan on the linked server

814

Another benefit of dynamically creation of sql commands consist of construction of a mechanism for

calling function from linked server, like we can see in the following example:

DECLARE @SQLSTMT nCHAR(4000)

DECLARE @idParameter uniqueidentifier

--we can put here a code for initializing the value of our variables

SET @ idParameter = '6EDAE050-F5EA-4B1C-823B-28B8F599FDC9'

SET @SQLSTMT =N' Select * '

 +'from OPENQUERY(DOUAROTI,''select * '

 +' from DataBase.dbo.FunctionName('''''+cast(@idParameter as char(36))+''''')'') '

 --we used only apostrophes

EXECUTE SP_EXECUTESQL @SQLSTMT

Conclusion:

1. Even if OPENQUERY does not accept variables for its argument we can build dynamically

the command and executed against the linked server.

2. For better performance we have to limit the number of records which are transported from

one server to other.

3. It’s better to force the execution of JOIN operation at the sites where the tables are located,

if we need better performance

4. Using OPENQUERY we can call function from the linked server, which can used variables.

5. The best results can be achieved if all operations will be executed on the central server.

Bibliography:

26. Microsoft. (n.d.). Optimizing Distributed Queries. Retrieved may 20, 2010, from msdn:

http://msdn.microsoft.com/en-us/library/Aa178113

27. Support, M. (2003, October 3). PRB: User-Defined Function Call in Four-Part Linked Server Query

Fails with . Retrieved April 20, 2010, from Support: http://support.microsoft.com/kb/319138

28. Team, Q. O. (2006, April 6). Tips, Tricks, and Advice from the SQL Server Query Optimization

Team. Retrieved May 20, 2010, from msdn: http://blogs.msdn.com/queryoptteam/

