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In this paper is performed the ways to estimate parameters of a  linear regression  model for that models 

which use different type of data sets: cross-sectional data, time series data, and panel data. 
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Estimation with straightforward OLS 

Data sets may be of three types: cross-sectional data, time series data, and panel data.  

Cross-sectional data sets are generated at one moment in time and the observations generally relate to 
households, individuals, enterprises, or geographical areas. It is usually very desirable that the sample 
should be drawn from a well-defined population using a statistically respectable sampling scheme, so that 
one may generalize from the results.  

Time series data sets consist of repeated observations on a set of variables over an interval of time. 
Generally the interval between the observations is fixed, often being a year, a quarter, or a month, but in 
some cases, such as analysis using stock market prices, the frequency may be much greater.  

Panel data sets have both cross-sectional and time series dimensions, being repeated observations over an 
interval of time on the same cross-section sample.  

Consider the model : 

uXXXXY ++++= 32433221 ββββ                                   (1) 

This is linear model in parameters and it may be fitted using straightforward OLS, provided that the 
regression model assumptions are satisfied. However, the fact that it is nonlinear in variables has 
implications for the interpretation of the parameters. In the multiple regressions the slope coefficients may 
represent the separate, individual marginal effects of the variables on Y, holding the other variables 
constant. In this model, such an interpretation is not possible. In particular, it is not possible to interpret �

2 

as the effect of X
2 

on Y, holding X
3 

and X
2
X

3 
constant, because it is not possible to hold both X

3 
and X

2
X

3 

constant if X
2 
changes.  

To give a proper interpretation to the coefficients, we can rewrite the model as:  

( ) uXXXY ++++= 3323421 ββββ              (2)         

The coefficient of X
2
, (�

2 
+ �

4
X

3
), can now be interpreted as the marginal effect of X

2 
on Y, holding X

3 

constant. This representation makes explicit the fact that the marginal effect of X
2 

depends on the value of 

X
3
. The interpretation of �

2 
now becomes the marginal effect of X

2 
on Y, when X

3 
is equal to zero.  

One may equally well rewrite the model as:  

( ) uXXXY ++++= 2433221 ββββ                                  (3) 

From this it may be seen that the marginal effect of X
3 

on Y, holding X
2 

constant, is (�
3 

+ �
4
X

2
) and that �

3 

may be interpreted as the marginal effect of X
3 
on Y, when X

2 
is equal to zero.  

If X
3 

= 0 is a long way outside its range in the sample, the interpretation of the estimate of �
2 

as an estimate 

of the marginal effect of X
2 

when X
3 

= 0 should be treated with caution. Sometimes the estimate will be 

completely implausible, in the same way as the estimate of the intercept in a regression is often implausible 
if given a literal interpretation. This can make it difficult to compare the estimates of the effects of X

2 
and 
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X
3 

on Y in models excluding and including the interactive term. One way of mitigating the problem is to 

rescale X
2 
and X

3 
so that they are measured from their sample means:  
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XXX
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−=

∗

∗

     (4) 

We will obtain: 
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222

XXX

XXX

+=

+=

∗

∗

    (5) 

Substituting for X
2 
and X

3
, the model becomes: 

( ) ( ) ( )( )
uXXXXXXXXXXXXY

uXXXXXXXXY

+++++++++=

++++++++=

∗∗∗∗∗∗

∗∗∗∗

324324324324333322221

332243332221

βββββββββ

ββββ

    (6)        
If we make follow notations: 

- 324332211 XXXX ββββα +++=  

- 3422 Xββα +=  

- 2433 Xββα +=  

we will obtain: 

uXXXXY ++++= ∗∗∗∗
32433221 βααα                              (7) 

The point of doing this is that the coefficients of X
2 

and X
3 

now give the marginal effects of the variables 

when the other variable is held at its sample mean, which is to some extent a representative value. For 
example, rewriting the new equation as: 

( ) uXXXY ++++= ∗∗∗
3334221 αβαα                             (8) 

it can be seen that 2α gives the marginal effect of ∗
2X , and hence 2X , when 03 =∗

X , that is, when 

03 =X is at its sample mean. 3α  has a similar interpretation.  

The first example is the econometric model of the consumption function: 

C = "a + #"bY + #"u      (9) 
If we now have a data sample over time - this is called a time series - of data on C and Y, we would write 
this as: 

Ct = a + #"bYt + #"ut;  t=1,2,.… ,n     (10) 

Interpreting the intercept and the slope of a simple regression 

The estimate of the intercept is usually of little interest. If the intercept was not in the model then the 
regression line would be forced to pass through the origin which might not be appropriate. Sometimes the 
intercept is interpreted as the value of the dependent variable when the explanatory is zero. Often this 
counterfactual does not make much sense. Slightly unusually, in this model the intercept does have an 
interpretation in relation to the average propensity to consume. 

The estimate of the slope is more interesting. Precisely what it means depends on the model. The slope 
parameter in this model is the marginal propensity to consume. 
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As mentioned above the standard errors of the estimated parameters are estimates of the standard deviation 
of these estimates and are thus an indicator of their precision. The square of the standard errors gives an 
estimate of the variance of the estimated parameters. 

It is important to remember that estimates in statistics are realizations of random variables. Random 
variables generally have a certain distribution and any good estimation method provides estimates with a 
known distribution.  

Are these regression results any good? 

It appears that these regression results entirely confirm Keynes’ theory that consumption is a linear 
function of disposable income and that the slope parameter (the mpc) lies between zero and one. So far so 
good. 

But are these regression results reliable? If they are, this is important information for policy makers and 
other agents in the economy. If not, they are likely to be misleading. It is crucial to ask these questions 
when considering regression results and a large part of Econometrics is devoted to answering these kinds 
of questions. At the moment, two ways of tackling this problem are suggested, both of them graphical. 

(i) The model ASSUMES that the relationship between consumption and disposable income is 
linear. Is this true? A scatter diagram of Ct against Yt provides one way of answering this 
question. 

(ii) Although we do not observe the random disturbances we can observe the regression residuals. 
These can be graphed over time. In the linear regression model, the disturbances are often 
assumed to be independent of each other. 

Are the regression residuals also independent? 

Production Function Example 

An example of an econometric model of production using the Cobb-Douglas production function has the 
forme: 

ulkAy +++= 21 αα      (11) 

Where y = log(Y), A = log(�0), k = log(K), l = log(L) and the random disturbance is now called u.  

Equation (11) is an example of some estimates of a multiple regression. It is called multiple because there 
is more than one explanatory variable. As before we will not pay much attention to the estimate of the 
intercept. It is the estimates of the slopes which are much more important. Are these estimates the sort of 
estimates which we would expect? 

To answer this question we have to consider the model which we are estimating. Recall that this is the 
Cobb-Douglas production function. For this production function, if the industry (or industries) concerned 
are competitive and pay both capital and labor inputs their marginal products, then the slope parameters 
( � 1, � 2 ) have the interpretation that they are the shares of total output paid to each factor. Thus we expect 
the slopes to be positive and less than one. Both the point estimates satisfy these requirements. 

In both the examples given above, we began with point estimates and then used the standard errors of the 
estimated parameters and knowledge of their distribution to construct confidence intervals. We can also use 
the same information to test hypotheses about the parameters of interest. 

In the consumption function case we might wish to test the hypothesis that b = 1. Thus: 

H0 : b >"1 

H1 : b < 1 
In the production function example if we wished to test the hypothesis that �1 = 1,we could do so by testing 
the null against a two-sided alternative: 

H0 : �1 = 1 

H1 : �1 $ 1 
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